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Ab~rae t - -A method has been developed for separation of the deformational component from a complex rock 
fabric. For the separation, data on the final (measured) fabric and the primary (pre-deformational) fabric are  
neces sar y  as input. The primary fabric data are obtained either from measurements in terrains where gradual 
transitions from primary to deformational fabrics occur or, in the case of magnetic anisotropy, this may be 
obtained from data in the literature on individual rock types. Examples of the use of the method are presented for 
rocks from the Nfzk~ Jesenfk Mountains of the NE Bohemian massif. 

INTRODUCTION 

IN THE determination of rock strain based on the 
measurement of strain markers, the pre-deformational 
strain marker shape is usually considered spherical. 
Even though this approach is realistic in some cases (e.g. 
post-depositional reduction spots in sedimentary rocks, 
'bird's eyes' in lapilli tufts, some kinds of ooids), there 
are also cases in which the pre-deformational shapes of 
the strain markers are non-spherical (e.g. pebbles in 
conglomerates, mafic enclaves in granitic rocks, the 
fabric ellipsoid constructed from the preferred orien- 
tation of minerals). For the correct determination of 
strain in the latter case, the pre-deformational non- 
spherical shape of the strain markers must be allowed 
for. 

In the past two decades attempts have been made to 
use the anisotropy of magnetic susceptibility (AMS) as a 
strain indicator. The relationship between the AMS and 
strain has been investigated theoretically (Owens 1974, 
Hrouda 1987, Rochette 1988, Henry & Hrouda 1989), 
empirically (for review see Hrouda 1982, Borradaile 
1988, Rathore 1988) and experimentally (Owens & 
Rutter 1978, Borradaile & Alford 1987, 1988). Even 
though the results of these studies are not absolutely 
unambiguous, it is obvious that in many rocks with 
reformational magnetic fabrics the relationship of the 
AMS to strain is very close, and the AMS, after calibrat- 
ing this relationship for a particular region on pilot 
specimens, can be used for rapid strain determination. 

As shown by the investigation of undeformed sedi- 
mentary and volcanic rocks (for summary see Hrouda 
1982), the primary magnetic fabric is never isotropic 
and, consequently, the magnetic fabric of a deformed 
rock is always complex, i.e. it is represented by a 
superposition of the deformational magnetic fabric on 
the primary one, unless the deformational overprinting 
is very strong. On the other hand, the variability in the 
primary magnetic fabric in both sedimentary and vol- 
canic rocks is relatively limited (see Hrouda 1982) and 
this can be used advantageously in the estimation of 
strain from AMS measurements. 

The first attempt to separate the deformational com- 
ponent of the AMS from a complex AMS was probably 
made by Hrouda (1979a), who developed the substitu- 
tional ellipsoid method for the case of coaxial or ortho- 
gonal superpositions of magnetic fabrics. Later this 
method was generalized by Goldstein (1980), Hirt et al. 
(1988) and Park et al. (1988) for obliquely oriented 
magnetic fabrics that are due to irrotational strains. 

The purpose of the present paper is to develop a 
method for the determination of rock strain using pre- 
deformational non-spherical strain markers for the 
separation of the deformational component from a com- 
plex AMS, even for the more general case in which 
strains are rotational. 

THEORY 

Let us consider a rock whose fabric originated by a 
superposition of tectonic deformation on a primary 
(either tectonic or non-tectonic) fabric. If the generation 
of the primary fabric is formally regarded as a kind of 
straining, the relationship between the final, tectonic 
and primary deformations is as follows (see Elliott 1970) 

Df = DtD p o r  D t = DfDp  1, (1) 

where Df, Dr, Dp and Dp 1 are the final, tectonic, primary 
and inverse primary deformation matrices, respectively. 
(Henceforth, the inverse matrix will be denoted by the 
superscript - 1  and the transposed matrix will be 
denoted by a prime.) 

The deformation matrix is in general asymmetric and 
very non-illustrative for physical and geological in- 
terpretation. In order to obtain a more convenient 
representation, it is advantageous to factorize this 
matrix into other matrices more simple to interpret. 
Among many possible factorizations, polar decomposi- 
tion, providing easy mathematical manipulations and 
simple physical interpretation, is used most often 
(Truesdell & Toupin 1960, Elliot 1970). In this decom- 
position, the deformation matrix is equal to the product 
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of a symmetric matrix (representing the distortion) and 
an orthogonal matrix (representing the rigid body ro- 
tation). Because of the non-commutative nature of 
matrix multiplication, there is the left polar decomposi- 
tion (in which the distortion follows the rotation) and the 
right polar decomposition (in which the rotation follows 
the distortion) (see Elliott 1970) 

D = TR and D = RU, (2) 

where R is the rotation matrix, T is the left stretch matrix 
and U is the right stretch matrix (notice that T ~ U). 
Using these factorizations and the fact that the inverse of 
an orthogonal rotation matrix equals its transpose (Flinn 
1979), equation (1) can be written as 

D t = TtRt = TfRfR~Tp 1 (3a) 

D t = S t U  t --- SfUfUplSp. (3b) 

It follows from equations (1) and (3) that the tectonic 
deformation matrix can be calculated if the complete 
final deformation matrix and the complete primary de- 
formation matrix are known, this is both the distortional 
and rotational components of the primary and final 
deformations must be known. The final stretch matrix 
can be obtained from the marker shapes or AMS 
measurement of the rock investigated, and the primary 
stretch matrix can be estimated in terrains where tran- 
sitions from primary to deformational fabrics occur or, 
in the case of AMS, also from published data on the 
primary magnetic fabrics of individual rock types (the 
best studied rocks from this point of view are 
sediments--see for example Rees & Woodall 1975, 
Rees 1983). (The relationship between the AMS and 
strain will be discussed later.) Unfortunately, the rota- 
tion matrix can be obtained neither from the AMS data 
nor from the marker shape measurements; it can be 
obtained only rarely, for example if the orientations of 
two lineations or foliations are known before defor- 
mation and after deformation, and mostly it cannot be 
determined at all. 

In many cases, the process of formation of the primary 
fabric does not involve a rigid body rotation (for 
example, deposition and gravitational compaction of a 
sedimentary rock). In this case the primary rotation 
matrix equals the unit matrix and there is no distinction 
between primary left and right stretch matrices; there- 
fore, only one primary stretch matrix will be used. Then, 
the equations (3) simplify to 

D t = T t R  t = T f R f S p  I (4a) 

D t = RtU t = RfUfS~ -1, (4b) 

where Sp = Up = Tp. 
From these equations it is obvious that for calculation 

of the tectonic deformation one needs to know both the 
final and primary stretch matrices and the final rotation 
matrix. However, obtaining the last matrix, as pointed 
out earlier, is difficult. Nevertheless, in many cases the 
rotation is represented by the rotation of an originally 
horizontal plane about a horizontal or inclined axis (for 

example, buckle folding of bedding). Then, the final 
rotation matrix is (see Flinn 1979) 

Rf  = RIR2R3R~RI, (5) 

where R1, R2 and R3 are, respectively, rotations about a 
vertical axis (by the angle of trend of the fold axis), about 
an E-W horizontal axis (by the angle of plunge of the 
fold axis), and about the fold axis (by the angle of 
rotation about this axis). (For definition of these 
matrices see Flinn 1979.) If there are indications that the 
primary fabric rotated before tectonic distortion (for 
example, if bedding underwent buckle folding before 
tectonic straining associated with slaty cleavage devel- 
opment), the left polar decomposition (equation 4a) 
should be used in the calculation of the tectonic defor- 
mation matrix. 

Sometimes there are indications that the primary 
fabric did not rotate before tectonic distortion, and the 
magnetic fabric underwent rigid body rotation after 
tectonic distortion (for example, if a sedimentary rock 
was vertically shortened after deposition and sub- 
sequently folded). In this case the right polar decompo- 
sition should be used (equation 4b). The left and right 
polar decompositions can be made numerically or, if a 
method for this is not available, the decompositions can 
be made as follows. The eigenvalues and eigenvectors of 
the matrices DtD ~ and OttDt (for left and right polar 
decompositions, respectively) give the squares of the 
principal tectonic strains (Sanderson 1982, appendix) 
and their orientations. Using equation (10) the tectonic 
left stretch or right stretch matrices can be calculated. 
Then, the tectonic rotation matrices can be determined 

Rt = TtlDt, R t -- DtUt 1. (6) 

From the rotation matrix the orientation of the axis of 
rotation as well as the angle of rotation can be calculated 
(see Flinn 1979). It should be noted that the tectonic 
rotation matrix, Rt, can be calculated only if the final 
rotation matrix is known (knowledge of this is necessary 
for the calculation of the D t matrix, see equations 4). It 
should also be noted that the R t matrix does not equal 
the R f  matrix, because the R~ matrix comprises not only 
the tectonic rotation, but also the rotation arising from 
the superposition of the tectonic distortion on the pri- 
mary distortion. 

From the measurement of marker shapes or AMS 
only the final left stretch matrix (Tf) can be directly 
obtained, because its principal directions are in the same 
positions as they were during straining. On the other 
hand, the right stretch matrix (Uf) cannot be directly 
obtained from marker shapes or AMS measurement, 
because the principal directions of this have been 
rotated by the R~ matrix (see equation 1) after distor- 
tion. Nevertheless, the Uf matrix can be obtained as 
follows. The measured tensor representing final distor- 
tion is factorized into its diagonal form matrix and the 
orientation matrix (equation 10). Then, the orientation 
matrix is rotated into the position before final rotation 

O --- R~OR, (7) 
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where OR is the orientation matrix specifying the orien- 
tations of the final principal strains after the final ro- 
tation. Then, using equation (10) the Uf matrix can 
easily be calculated. 

The relationship between the AMS and strain, though 
not known in all its aspects, for the majority of deforma- 
tional magnetic fabrics can, to a first approximation, be 
described satisfactorily as follows (see, for example, 
Hrouda 1982, Borradaile 1988, Rathore 1988) 

L = ($1/$2) a, F = ($2/$3) a, P = ($1/$3) a, (8) 

where L = kl/k2, F = kE/k3 and P = kJk3  are the 
magnetic lineation, magnetic foliation and degree of 
magnetic anisotropy, respectively, k I -> k 2 --- k 3 are the 
principal susceptibilities and S 1 >-- S 2 ~-~ S 3 are the 
principal stretches. The value of a varies according to 
lithology, the carriers of magnetism in a rock, and the 
orienting mechanisms of magnetic minerals during 
straining. It ranges approximately from 0.02 to 0.2, 
being 0.05 on average (Hrouda 1990). 

Assuming constant volume strain and using the princi- 
pal susceptibilities normalized by their geometric mean, 
the relationship can be simplified to 

K i = S a, K i = ki(klkEk3) 1/3, i = 1,2,3. (9) 

The stretch matrix can be expressed in diagonal form 
as follows, 

s = o s o ' ,  (10)  

where s is the stretch matrix, S is the diagonal form of the 
s matrix and O is the matrix specifying the orientation of 
the S matrix. The S matrix is defined 

$11 = $1, $22 = $2, $33 = $3 (11) 

S12 = 521 = S23 = S13 = 831 = 0. 

Using equations (9)-(11) one can calculate the stretch 
matrices from the AMS and these can be used in the 
calculation of equations (4) and (7). If the a factor in 
equation (9) is not known for the rock investigated it is 
not possible to calculate the tectonic stretch from 
equations (4). Nevertheless, using the normalized sus- 
ceptibility tensors instead of the stretch tensors, the 
tectonic components of the AMS can be calculated 
provided that the relationship of AMS to strain is of the 
type defined in equations (8) and (9). 

EXAMPLES 

For an illustration of how the method works, some 
examples were selected from the Lower Carboniferous 
flysch (Culm) rocks of the Nfzk)~ Jesenfk Mountains of 
the NE Bohemian massif. These rocks are characterized 
by the gradual development of structures from an almost 
undeformed sedimentary state, through spaced cleavage 
and slaty cleavage, to metamorphic schistosity (see for 
example Hrouda 1976, 1978, 1979a). In the eastern part 
of the Nfzk~ Jesentk Mountains, one can observe bed- 
ding (sometimes gently folded) and, rarely, also sedi- 
mentary current structures in outcrop. In the central 
part of the mountains, spaced cleavage is also present, 
and in the western part the presence of asymmetric NW- 
vergent folds in bedding and extremely well developed 
slaty cleavage is characteristic. This slaty cleavage is 
much more conspicuous than bedding (which can only 
be identified by laborious searching for lithological 
boundaries between greywackes and slates), is almost 
perfectly planar and penetrative and keeps constant 
orientation over large areas regardless of position in the 
fold. In the NW-dipping fold limbs the slaty cleavage 
cuts the bedding at a high angle, while in the SE-dipping 
folds limbs it cuts bedding at a low angle, and in some 
places is even parallel to bedding. 

Detailed analyses by Dvof~k & Hrouda (1972) and 
Hrouda (1976, 1978, 1979a,b, 1981) have shown that in 
the eastern part of the region the deformation ended 
with the buckle folding of bedding and the development 
of thrust sheets, while in the western part the buckle 
folding was followed by the development of slaty cleav- 
age, which was associated with ductile deformation 
mostly represented by strong shortening perpendicular 
to the cleavage. 

For demonstration of the method, one outcrop in the 
eastern part of the Nfzk~ Jesen~ Mountains and two 
exposures in the western part were selected. The results 
are summarized in Table 1 and Figs. 1-5. In the table, 
the type of magnetic fabric (sedimentary, final, tecto- 
nic), type of decomposition, the values of the c, P and T 
parameters, as well as the trend and plunge of the 
rotation axis and the angle of rotation for each exposure, 
are presented. The parameters characterize the strain 
intensity, degree of anisotropy and shape of the suscepti- 

Table 1. Strain and AMS parameters of selected outcrops of the Nfzk~ Jesen~ Mountains 

Type of 
Exposure c P T Axis* Angler Strain decomposition 

Togovce 1.99 1.035 0.50 Primary 
5.11 1.085 0.73 210/0 30 Final 
2.80 1.053 0.68 26/2 32 Tectonic Right 

'Cleavage' 2.19 1.040 0.85 Primary 
10.18 1.123 0.05 44/1 90 Final 
8.90 1.115 0.52 58/4 75 Tectonic Left 

'Bedding' 2.19 1.040 0.85 Primary 
18.80 1.158 0.69 44/1 34 Final 
8.85 1.115 0.59 56/1 36 Tectonic Left 

*This represents the trend and plunge (in degrees), respectively, of the axis of rigid body rotation. 
*This represents the amount of rotation (in degrees). 
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Fig. 1. Contoured plots of (a) magnetic foliation poles and (b) mag- 
netic lineations in the Hradec-Kyjovice Formation. Equal-area lower- 
hemisphere projections in geographic co-ordinates. (a) The lowest 
contour is 0.5%, with steps at 2% intervals; (b) the lowest contour is 

1%, with steps at 2% intervals. 
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Fig. 2. Contoured plots of (a) magnetic foliation poles and (b) mag- 
netic lineations in the Hradec-Kyjovice Formation in palaeogeo- 
graphic co-ordinates. Equal-area lower-hemisphere projections. The 

lowest contour is 1%, with steps at 2% intervals. 

bility ellipsoid (which is the same as that of the strain 
ellipsoid), respectively. They are defined as follows 
(Nagata 1961, Jelfnek 1981) 

C = S l ] S  3 

P = k l / k 3  (12) 

T = 2 l n ( k 2 / k a ) / ( l n  k l / k 3 )  - 1. 

If 0 < T -< I the magnetic fabric is planar, if - 1 - T < 0 
it is linear. 

The figures present the following directional data: 
magnetic lineations and magnetic foliation poles, bed- 
ding poles, cleavage poles, bedding--cleavage intersec- 
tions, fold axes and principal strain directions. 

In the easternmost rocks (of the Hradec-Kyjovice 
Formation) of the N/zk~ Jesen~ Mountains, the mag- 
netic fabric is closely related to the sedimentary fabric. 

The magnetic foliation is nearly parallel to bedding and 
the pattern of the magnetic lineation is compatible with 
that of sedimentary lineations (Hrouda 1979b). The 
magnetic foliation poles create an imperfect girdle, 
oriented NW-SE (see Fig. la), while the magnetic 
lineations are mostly oriented NE-SW (Fig. lb). How- 
ever, in the so-called palaeogeographic co-ordinate sys- 
tem (i.e. that defined by horizontal bedding and geo- 
graphical north) the magnetic foliation poles are more or 
less vertical (Fig. 2a) and the magnetic lineations mostly 
remain NE-SW (Fig. 2b). These facts, as well as the 
results of detailed fold analysis (Hrouda 1978), suggest 
that the folding in the Hradec-Kyjovice Formation was 
mostly represented by the buckling of strata without 
strong internal straining, which would be detectable by 
the AMS. During this folding not only the bedding but 
also the magnetic fabric rotated, and the buckle folding 
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Fig. 3. Orientations of l~neipal su~eplibilJties and principal strains 
in the Todovce location. Equal-area lower-hemisphere projection in 

geoi~'al~ic e~.o~linates. 
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Fig. 4. Orientations of principal susceptibilities and principal strains 
in the Paseck~ fleb valley exposure with slaty cleavage at a high angle 
to bedding. Equal-area lower-hemisphere projection in geographic co- 

ordinates. For legend see Fig. 3. 

N 

.. 0 ,  

Fig. 5. Orientations of principal susceptibilities and principal strains 
in the Paseck~ ~.leb valley exposure with bedding parallel to slaty 
cleavage. Equal-area lower-hemisphere projection in geographic co- 

ordinates. For legend see Fig. 3. 

was the last deformation (rigid body rotation) that 
affected the magnetic fabric in an observable way. 

To illustrate the use of the right polar decomposition, 
rocks of the Hradec-Kyjovice Formation at the locality 
of Togovce were chosen. The results are summarized in 
Table 1 and Fig. 3. It is obvious that the degree of 
anisotropy at Togovce is higher and the magnetic fabric 
is more oblate than in the undeformed flysch. (For 
example, in undeformed sandstones of the Flysch belt of 
the West Carpathians mean values of P = 1.035 and 
T = 0.5 are found, Hrouda 1991.) Also the magnetic 
foliations dip more steeply than usual after deposition. 
From this one can conclude that the rocks underwent 
some deformation. This deformation can be determined 
using our method. However, one needs to know the 
primary fabric. In our case, one can hardly obtain direct 
data on the primary magnetic fabric; one can only 
assume that, after deposition, the degree of anisotropy 
and the shape factor were similar to those of the unde- 
formed flysch and that the magnetic foliation was 
roughly horizontal and the magnetic lineation was paral- 
lel to the current direction (these have been investigated 
sedimentologically by Kumpera 1984). As the measured 
final magnetic foliation is parallel to the bedding, it is 
likely that the rotational component of deformation 
(represented by buckle folding) that tilted the bedding 
took place later than the distortional component of 
deformation and thus the right polar decomposition 
should be used. 

It can be seen in Table 1 and Fig. 3 that the calculated 
minimum tectonic stretch direction is nearly vertical and 
the maximum tectonic stretch direction is horizontal, 
oriented WNW-ESE.  The strain ellipsoid is clearly of 
flattening type, the degree of anisotropy of the calcu- 
lated tectonic deformation component is relatively high, 
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the rotation axis is near the strike direction and the 
rotation angle is similar to the dip of bedding. It can be 
concluded that this deformation was probably rep- 
resented by vertical shortening due to the weight of 
overlying strata. The W-E-oriented maximum tectonic 
stretch may represent weak stretching due to the thrust- 
ing. 

To illustrate the use of the left polar decomposition, a 
pair of exposures in the Paseek~ ~.leb valley in the 
western part of the Nfzk3~ Jesen~ Mountains was 
selected. In the first exposure (denoted 'cleavage' in 
Table 1), where the slaty cleavage makes a high angle 
with bedding, the degree of anisotropy is relatively high, 
the magnetic fabric is triaxial with the magnetic foliation 
parallel to the cleavage and the magnetic lineation 
parallel to the bedding-cleavage intersection (Table l,  
Fig. 4; for other details see Dvorak & Hrouda 1972). In 
the second exposure (denoted 'bedding' in Table 1), 
where the slaty cleavage is parallel to the bedding, the 
degree of magnetic anisotropy is very high, the magnetic 
fabric is oblate and the magnetic foliation is parallel to 
the bedding and slaty cleavage (Table 1, Fig. 5). 

In the estimation of the strain associated with the 
formation of slaty cleavage, the primary AMS was 
obtained through computer matching of various primary 
AMS data in such a way that the AMS components due 
to the tectonic strain were similar in both the exposures 
investigated. This approach followed the idea that the 
strain affecting the two exposures occurring not far from 
each other should have been more or less the same, 
because it is associated with the generation of the slaty 
cleavage that is constant over large areas. 

It is clear from Figs. 4 and 5 that the direction of 
minimum tectonic stretch in both exposures plots close 
to the cleavage pole and that the direction of maximum 
tectonic stretch plots fairly close to fold axis and/or the 
cleavage-bedding intersection. The rotation axis also 
plots near the fold aixs. The tectonic strain is relatively 
strong (c = 9) and of flattening type (Table 1). It can be 
concluded that this strain operated in association with 
the slaty cleavage development and was represented 
mostly by shortening perpendicular to the slaty cleav- 
age. 

The primary AMS obtained by the above computer 
matching is characterized by a degreee of anisotropy 
that is slightly higher than that usual for undeformed 
flysch sediments, but slightly lower than that found in 
the least deformed rocks of the Nfzk)~ Jesenfk Mountains 
(viz. the Hradec-Kyjovice Formation, in which the 
mean anisotropy degree is P = 1.054, Hrouda 1979a). 
This may indicate that the rocks of the western part of 
the Nizk~ Jesen~ Mountains were also vertically 
shortened before folding and cleavage development, but 
not as intensely as were the rocks of the eastern part. 

DISCUSSION AND CONCLUSIONS 

The method for separation of the component of 
tectonic deformation from a complex fabric was 

developed above all for deformation indicated by mag- 
netic anisotropy. However, the whole procedure is 
divided into two parts, one working with strains and the 
other with the relationship of AMS to strain. Conse- 
quently, the method can be used for the separation of 
the deformational component from a complex rock 
fabric investigated by any method. 

In the method presented here the relationship of AMS 
to strain was considered to be very simple (equations 8- 
11). Even though expression (8) is satisfactory in most 
cases, it is not the only one which can be used in our 
method. If other relationships are developed (for 
example, the theoretical models proposed by Owens 
1974), the method can work for these too. 

Unlike the methods used until now (Goldstein 1980, 
Hirt et al. 1988, Park et al. 1988), the present method 
allows for possible rotations before or after tectonic 
distortion. Even though the distortional component can 
in principle be calculated, using other methods, by 
ignoring the rotations (for example, by including ro- 
tation in the primary AMS), the results are not as 
accurate as those provided by our method, because the 
observable orientation of bedding corresponds to the 
final and not to the pre-tectonic state. 

The success of the method developed here depends to 
a great extent on the validity of the relationship of AMS 
to strain. This relationship has been investigated in 
many papers studying the correlation between AMS and 
strain determined using non-magnetic methods, and in 
some papers modelling this relationship theoretically 
and in some papers investigating rock analogs deformed 
in the laboratory. These investigations have been 
reviewed by the present author (Hrouda 1989). It has 
been shown that, despite various formulae for the re- 
lationship of AMS to strain introduced by various 
authors, the relationship that is most simple and satisfac- 
tory is that given by equation (8). It can be shown that 
the other suggested formulae can be converted into 
equation (8) (e.g. Hrouda 1982, 1991). It is fair to note 
that some scientists doubt the existence of any relation- 
ship of AMS to strain; this opinion is partially expressed 
in the paper by Borradaile (1988). The present author 
does not want to present here detailed arguments 
against this pessimism, but would only like to state that 
only two papers revealed no or even an inverse corre- 
lation between AMS and strain (Borradaile & Mother- 
sill 1984, Borradaile & Tarling 1984). All the other 
papers revealed a relatively close correlation between 
the AMS and strain that can be described well by 
equation (8). 

The value of a in equation (8) is not constant: it 
depends on the mineral carrying the AMS (Hrouda 
1987, Rochette 1988, Henry & Hrouda 1989) and prob- 
ably also on the lithology of the rock investigated. If the 
determination of the tectonic component of strain using 
our method is to be correct, then the value of a must be 
known. The best way of obtaining this value is to 
investigate the relationship of AMS to strain on a small 
group of pilot specimens (for example in the way used by 
Hirt et al. 1988). If one is satisfied with only the determi- 



Tectonic  c o m p o n e n t  of a complex fabric 71 

na t ion  of the tectonic  A M S  c o m p o n e n t ,  the de termi-  
na t ion  of  the a va lue  is no t  critical and  the average value  

a = 0.05 can be used.  
The  last factor affecting accuracy in the separa t ion  of 

the p re -de fo rmat iona l  and  de fo rmat iona l  A M S  is the 
rel iabil i ty with which the p re -deformat iona l  A M S  is 
known.  In  pr inciple ,  this A M S  can be k n o w n  rel iably 
only in rocks showing a gradual  t rans i t ion  f rom the 
u n d e f o r m e d  into a s t rongly de fo rmed  state. In  o ther  
cases, all one  can use is the publ i shed  data  on pr imary  
A M S  of var ious  rock types,  and ,  consequen t ly ,  the 
separa t ion  is no t  accurate.  Fo r tuna te ly ,  the na tu ra l  
var ia t ion  in p r imary  A M S  is no t  large (e.g. H r o u d a  
1982) and  the er ror  arising f rom use of inaccura te  pre-  
de fo rmat iona l  A M S  is no t  large. In  any  case, the use of 
publ i shed  A M S  data  gives rise to be t t e r  results than  
ignor ing  the p re -de fo rma t ion  A M S  entirely.  
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